Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la structure et les propriétés des réseaux, y compris les réseaux de rencontres et de protéines, les effets de petit monde, les hubs et les propriétés sans échelle.
Explore l'apprentissage de données interconnectées à l'aide de graphiques, couvrant les défis, la conception du GNN, les paysages de recherche et la démocratisation du graphique ML.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Explore l'analyse statistique des données du réseau, couvrant les réseaux échantillonnés bruyants, l'estimation de la probabilité, les réseaux multicouches et les réseaux dirigés.
Explore la propagation de la croyance dans les modèles graphiques, les graphiques de facteurs, les exemples de verre de spin, les distributions de Boltzmann et les propriétés de coloration des graphiques.
Couvre les tests d'identité polynomiale à l'aide d'oracles et d'évaluations ponctuelles aléatoires, avec des applications dans la théorie des graphes et les aspects algorithmiques.