Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Explore les fondamentaux du traitement des signaux, y compris les signaux de temps discrets, la factorisation spectrale et les processus stochastiques.
Explore les techniques de Monte Carlo pour l'échantillonnage et la simulation, couvrant l'intégration, l'échantillonnage d'importance, l'ergonomie, l'équilibrage et l'acceptation de Metropolis.
Explore les signaux, les instruments et les systèmes, couvrant ADC, Fourier Transform, échantillonnage, reconstruction des signaux, alias et filtres anti-alias.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.