Explore la distribution de Wishart, les propriétés des matrices de Wishart, et la distribution de T2 de Hotelling, y compris la statistique T2 de deux exemples Hotelling.
Introduit des statistiques inférentielles, couvrant l'échantillonnage, la tendance centrale, la dispersion, les histogrammes, les scores z et la distribution normale.
Couvre le concept d'échantillonnage, le théorème d'échantillonnage, la reconstruction du signal et la conversion des signaux analogiques en signaux numériques.
Examine l'échantillonnage dans l'estimation de la probabilité maximale et ses répercussions sur la contribution conjointe de la probabilité et de la probabilité.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Couvre les chaînes de Markov et leurs applications dans les algorithmes, en se concentrant sur l'échantillonnage Markov Chain Monte Carlo et l'algorithme Metropolis-Hastings.