Explore les surfaces minimales, la courbure, l'opérateur Laplace-Beltrami, les solutions numériques, le lissage laplacien, le flux de diffusion et l'intégration du temps.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore la courbure normale sur une surface, discutant de la courbure orientée, des preuves d'existence et des méthodes d'élimination pour trouver la courbure.