Séance de cours

Critères de sélection du modèle : AIC, BIC, Cp

Séances de cours associées (477)
Régression linéaire : analyse des données sur l'ozone
Explore l'analyse de régression linéaire des données sur l'ozone à l'aide de modèles statistiques.
Paradoxe bus rouge/bus bleu
Explore le paradoxe du bus rouge/bus bleu, les modèles de logit imbriqués et les modèles multivariés d'extrême valeur dans le transport.
Régression linéaire probabiliste
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Estimation et intervalles de confiance
Explore les biais, la variance et les intervalles de confiance dans l'estimation des paramètres à l'aide d'exemples et de distributions.
Régression logistique : prédiction de la végétation
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Estimateurs et intervalles de confiance
Explore le biais, la variance, les estimateurs non biaisés et les intervalles de confiance dans l'estimation statistique.
Régression linéaire : estimation et inférence
Explore l'estimation de régression linéaire, les hypothèses de linéarité et les tests statistiques dans le contexte de la comparaison de modèles.
Apprentissage supervisé : Régression linéaire
Couvre l'apprentissage supervisé en mettant l'accent sur la régression linéaire, y compris des sujets comme la classification numérique, la détection des pourriels et la prédiction de la vitesse du vent.
Bénéfices et écarts dans l'estimation
Discuter du biais et de la variance dans l'estimation statistique, en explorant le compromis entre l'exactitude et la variabilité.
Régression linéaire généralisée : classification
Explorer la régression linéaire généralisée, la classification, les matrices de confusion, les courbes ROC et le bruit dans les données.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.