Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.
Explore les fondamentaux de l'analyse des séries chronologiques, y compris la stationnarité, les processus linéaires, la prévision et les aspects pratiques.
Couvre la modélisation structurale, le filtre Kalman, la stationnarité, les méthodes d'estimation, la prévision et les modèles ARCH dans les séries chronologiques.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Aborde l'ajustement excessif dans l'apprentissage supervisé par le biais d'études de cas de régression polynomiale et de techniques de sélection de modèles.