Discute de la descente de gradient stochastique et de son application dans l'optimisation non convexe, en se concentrant sur les taux de convergence et les défis de l'apprentissage automatique.
Explore les connexions sur les collecteurs, en mettant l'accent sur la définition axiomatique et les propriétés des dérivés dans les champs vectoriels de différenciation.
Introduit Manopt, une boîte à outils pour l'optimisation sur les manifolds, couvrant le gradient et les contrôles hessiens, les appels de solveur et la mise en cache manuelle.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.
Introduit Manopt, une boîte à outils pour l'optimisation sur les collecteurs, en se concentrant sur la résolution des problèmes d'optimisation sur les collecteurs lisses à l'aide de la version Matlab.