Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.
Introduit la modélisation fondée sur les données en mettant l'accent sur la régression, couvrant la régression linéaire, les risques de raisonnement inductif, l'APC et la régression des crêtes.
Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Couvre la régression linéaire et pondérée, les paramètres optimaux, les solutions locales, l'application SVR et la sensibilité des techniques de régression.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.