Explore les concepts avancés dans les modèles de régression linéaire, y compris la multicolinéarité, les tests d'hypothèses et les valeurs aberrantes de manipulation.
Introduit une régression linéaire simple, les propriétés des résidus, la décomposition de la variance et le coefficient de détermination dans le contexte de la loi d'Okun.
Introduit la régression linéaire, l'ajustement de la ligne de couverture, l'entraînement, les gradients et les fonctions multivariées, avec des exemples pratiques tels que l'achèvement du visage et la prédiction de l'âge.
Couvre les bases de la régression linéaire dans l'apprentissage automatique, y compris la formation des modèles, les fonctions de perte et les mesures d'évaluation.