Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore la formation, l'optimisation et les considérations environnementales des réseaux neuronaux, avec des informations sur les clusters PCA et K-means.
Explore les représentations neuro-symboliques pour comprendre les connaissances et le raisonnement communs, en mettant l'accent sur les défis et les limites de l'apprentissage profond dans le traitement du langage naturel.
Déplacez-vous dans des représentations neuro-symboliques pour la connaissance du sens commun et le raisonnement dans les applications de traitement du langage naturel.
S'engage dans l'apprentissage continu des modèles de représentation après déploiement, soulignant les limites des réseaux neuronaux artificiels actuels.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Explore l'avancement des modèles système de l'intelligence humaine au moyen d'analyses comparatives intégrées et de l'importance de Brain-Score pour des comparaisons équitables de modèles.
Couvre la fonction neuronale, les modèles hiérarchiques, les comportements des taxis odorants et les paramètres de circuit disparates dans 18 diapositives.