Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Couvre la régression linéaire, de lélaboration de questions de recherche à linterprétation de R-carré et en ajoutant des prédicteurs pour améliorer le modèle.
Explore les techniques avancées de modélisation à plusieurs niveaux, y compris l'adaptation de modèles distincts, l'estimation des coefficients et la vérification des résidus pour l'évaluation des modèles.
Explore la sélection de modèles imbriqués dans des modèles linéaires, en comparant les modèles à travers des sommes de carrés et ANOVA, avec des exemples pratiques.
Examine la régression probabiliste linéaire, couvrant les probabilités articulaires et conditionnelles, la régression des crêtes et l'atténuation excessive.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.