Introduit des points d'équilibre et des bifurcations dans les équations différentielles, en discutant de leur stabilité et de leur pertinence dans divers contextes.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Couvre les méthodes de résolution d'équations non linéaires, y compris les méthodes de bisection et de Newton-Raphson, en mettant l'accent sur les critères de convergence et d'erreur.