Régression du noyau : Moyenne pondérée et cartes des caractéristiques
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les applications d'apprentissage automatique dans la modélisation des matériaux, couvrant la régression, la classification et la sélection des fonctionnalités.
Couvre la régression linéaire, la régression pondérée, la régression pondérée localement, la régression vectorielle de soutien, la manipulation du bruit et la cartographie oculaire à l'aide de SVR.
Couvre les principes et les applications de la régression linéaire, en mettant l'accent sur la construction d'un modèle simple pour faire des suggestions.
Couvre la récapitulation de Support Vector Regression avec un accent sur l'optimisation convexe et son équivalence à la régression du processus gaussien.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Introduit des concepts clés d'apprentissage automatique, tels que l'apprentissage supervisé, la régression par rapport à la classification et l'algorithme K-Nearest Neighbors.