Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Couvre les tests de ratio de vraisemblance, leur optimalité et les extensions dans les tests d'hypothèses, y compris le théorème de Wilks et la relation avec les intervalles de confiance.
Introduit une estimation de vraisemblance maximale en économétrie, couvrant les principes, les propriétés, les applications et les tests de spécification.
Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.
Couvre l'estimation de la vraisemblance maximale pour estimer les paramètres en maximisant la précision de la prédiction, en démontrant par un exemple simple et en discutant de la validité par le biais de tests d'hypothèses.
Explorer les tests d'hypothèses à l'aide du théorème de Wilks, les statistiques du rapport de probabilité, les valeurs p, l'estimation des intervalles et les régions de confiance.