Se penche sur les estimateurs de vraisemblance maximale, leurs propriétés et leur comportement asymptotique, en mettant l'accent sur la cohérence et la normalité asymptotique.
Explore les signaux de débruitage avec des modèles de mélange gaussien et l'algorithme EM, l'analyse de signal EMG et la segmentation d'image à l'aide de modèles markoviens.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.
Couvre le test du rapport de vraisemblance dans les modèles de choix, en comparant des modèles illimités et restreints par l'analyse comparative et l'essai de différentes spécifications du modèle.