Explore les méthodes de clustering K-means et DBSCAN, en discutant des propriétés, des inconvénients, de l'initialisation et de la sélection optimale des clusters.
Introduit l'apprentissage non supervisé en cluster avec les moyennes K et la réduction de dimensionnalité à l'aide de PCA, ainsi que des exemples pratiques.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.
Explore les concepts avancés de coloration graphique, y compris la coloration plantée, le seuil de rigidité, et les variables gelées en points fixes BP.
Explore le centroïde, le médioïde, l'homogénéité, la séparabilité dans le clustering, l'évaluation de la qualité, la stabilité, les connaissances d'experts et les algorithmes de clustering.