Couvre le calcul intégral multivariable, y compris les cuboïdes rectangulaires, les subdivisions, les sommes du Douboux, le théorème de Fubini et l'intégration sur des ensembles délimités.
Explore les variables aléatoires, les algèbres sigma, l'indépendance et les mesures invariantes de décalage, en mettant l'accent sur les ensembles de cylindres et les algèbres.
Fournit un aperçu des théorèmes intégraux et de leurs applications dans les systèmes numériques, en se concentrant sur les intégrales itérées et la théorie des mesures.