Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Introduit les bases des équations différentielles ordinaires, explorant l'existence, l'unicité, les dimensions supérieures, les fonctions de Lipschitz et la recherche de solutions.
Couvre les équations différentielles ordinaires, y compris les ordres, les solutions et les équations séparables, en mettant l'accent sur les exemples et les solutions générales.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.