Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Discute du surajustement, de la sélection des modèles, de la validation croisée, de la régularisation, des représentations de données et de la gestion des données déséquilibrées dans l'apprentissage automatique.
Examine les défis que posent les hypothèses de données, les biais et d'autres aspects de la recherche, y compris les écritures incomplètes et les frustrations des nouveaux arrivants.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.