Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.
Explore les méthodes d'intégration numérique et leur application dans la résolution d'équations différentielles et la simulation de systèmes physiques.
Couvre la transformée de Fourier, ses propriétés, ses applications dans le traitement du signal et les équations différentielles, en mettant l'accent sur le concept de dérivées devenant des multiplications dans le domaine des fréquences.
Explore les caractéristiques de la turbulence, les méthodes de simulation et les défis de modélisation, fournissant des lignes directrices pour le choix et la validation des modèles de turbulence.