Explore l'analyse de séries chronologiques multivariées, la cointégration, la prévision avec les modèles ARMA, et les applications pratiques dans l'analyse des taux d'intérêt.
Explore les méthodes de prévision de la demande, l'analyse des séries chronologiques, la prévision des tendances et l'application du modèle Holt-Hiver.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les polynômes caractéristiques inverses, les équations Yule-Walker et les autocorrelations.
Explore Vector Autoregression pour la modélisation de séries temporelles à valeur vectorielle, couvrant la stabilité, les équations de Yule-Walker et la représentation spectrale.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.