Couvre la probabilité appliquée, les processus stochastiques, les chaînes de Markov, l'échantillonnage de rejet et les méthodes d'inférence bayésienne.
Couvre les modèles stochastiques de communication, se concentrant sur les variables aléatoires, les chaînes Markov, les processus Poisson et les calculs de probabilité.
Introduit des concepts clés en probabilité et en statistique, illustrant leur application à travers divers exemples et soulignant l'importance du langage mathématique dans la compréhension de l'univers.
Explore un modèle de Markov de premier ordre à laide dun exemple de source ensoleillée-pluie, démontrant comment les événements passés influencent les résultats futurs.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.