Explore la modélisation hydroacoustique à travers des analogies électriques, en discutant des méthodes de résolution, des équations simplifiées et des interprétations physiques.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Couvre les méthodes numériques pour résoudre les équations différentielles et leur analyse de stabilité, en se concentrant sur le calcul des erreurs et les applications pratiques en ingénierie et en science.
Explore des méthodes numériques telles que Crank-Nicolson, Heun, Euler et RK4 pour résoudre les ODE, en mettant l'accent sur l'estimation des erreurs et la convergence.
Explore les méthodes numériques pour résoudre l'équation de Schrdinger en fonction du temps à l'aide de la représentation en grille et des algorithmes à opérateur divisé.