Introduit la méthode de Newton pour résoudre les équations non linéaires itérativement, en soulignant sa convergence rapide, mais aussi son incapacité potentielle à converger dans certains cas.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles, en se concentrant sur l'erreur de troncature locale, la stabilité et la continuité de Lipschitz.
Couvre les méthodes itératives pour résoudre des équations linéaires et analyser la convergence, y compris le contrôle des erreurs et les matrices définies positives.
Couvre la convergence des méthodes de points fixes pour les équations non linéaires, y compris les théorèmes de convergence globale et locale et lordre de convergence.