Couvre les bases de la régression linéaire, la méthode OLS, les valeurs prédites, les résidus, la notation matricielle, la bonté d'adaptation, les tests d'hypothèse et les intervalles de confiance.
Introduit la conception expérimentale en biostatistiques, couvrant le processus de recherche, les tests d'hypothèses, la modélisation ANOVA et l'interprétation des résultats.
Explore GLM II, couvrant les tests d'hypothèses, les tests F, les comparaisons multiples et enrichissant le modèle pour tenir compte des artefacts d'imagerie.
Examine les tests d'hypothèse dans les statistiques, en mettant l'accent sur la prise de décision basée sur des données d'échantillon et le contrôle des probabilités d'erreurs.