Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Couvre les problèmes de contrôle optimal en se concentrant sur les conditions nécessaires, l'existence de contrôles optimaux et les solutions numériques.
Explore la programmation dynamique pour un contrôle optimal, en se concentrant sur la stabilité, la politique stationnaire et les solutions récursives.
Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Couvre la théorie des systèmes, le contrôle de rétroaction classique et les applications dans les bâtiments écologiques et les installations de réfrigération au gaz naturel.