Explore les morphismes projectifs, les modules gradués et leurs applications en géométrie algébrique, en mettant l'accent sur leurs propriétés et leur construction.
Explore les nombres dintersection pour compter les solutions aux équations polynomiales algébriquement et leur signification géométrique dans la théorie des intersections et la géométrie énumérative.
Couvre la géométrie algébrique moderne, se concentrant sur les schémas et les schémas d'affines, y compris un examen de la géométrie algébrique classique et le théorème de Bézout.
Couvre les conjectures de Weil sur la rationalité, l'équation fonctionnelle et l'hypothèse de Riemann, explorant les propriétés des variétés en géométrie algébrique.