Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
L'analyse de sensibilité basée sur les variations pour les systèmes stochastiques couvre l'impact des paramètres d'incertitude et des indices de sensibilité dans les modèles stochastiques.
Explore la vraisemblance du Whittle déprécié pour les séries chronologiques et les données spatiales, en mettant l'accent sur l'adaptation de la densité spectrale au parodogramme pour de meilleures prédictions et une meilleure estimation des paramètres.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Déplacez-vous dans l'analyse stochastique, la théorie des contrats et les modèles épidémiques, explorant les incertitudes et les interventions en épidémiologie.
Couvre les problèmes d'arrêt optimaux dans les probabilités appliquées et les processus stochastiques, en se concentrant sur la théorie et les applications pratiques.
Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Explore le modèle p-spin dans la théorie du verre de spin et la convergence au modèle d'énergie aléatoire en utilisant les intégrales gaussiennes et la méthode de réplique.