Méthodes de décomposition et de régression des erreurs
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la théorie de la décomposition de la valeur singulière, les solutions de systèmes linéaires, les moindres carrés et les concepts d'ajustement des données.
Présente les principes fondamentaux de la régression dans l'apprentissage automatique, couvrant la logistique des cours, les concepts clés et l'importance des fonctions de perte dans l'évaluation des modèles.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Couvre la pénalisation dans la régression des crêtes, en mettant l'accent sur le compromis entre le biais et la variance dans les modèles de régression.
Explore le compromis entre le biais et la variation dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre le biais et la variance dans les prédictions du modèle.
Couvre l'analyse de la variance, de la construction du modèle, de la sélection des variables et de l'estimation des fonctions dans les méthodes de régression.