Couvre les propriétés et les structures des catégories de modèles, en mettant l'accent sur les factorisations, les structures de modèles et l'homotopie des cartes continues.
Couvre le concept d'un sous-espace étant un retrait d'un autre espace et des groupes fondamentaux, y compris des exemples comme la contraction des dents d'un collier.
Explore l'équivalence homotopique dans les complexes en chaîne, mettant l'accent sur la construction d'objets de chemin et la caractérisation homotopique gauche/droite.