Couvre les concepts fondamentaux de la statistique, y compris la théorie de l'estimation, les distributions et la loi des grands nombres, avec des exemples pratiques.
Couvre la théorie de l'échantillonnage de Markov Chain Monte Carlo (MCMC) et discute des conditions de convergence, du choix de la matrice de transition et de l'évolution de la distribution cible.
Couvre la corrélation et les corrélations croisées dans l'analyse des données sur la pollution atmosphérique, y compris les séries chronologiques, les autocorrelations, l'analyse de Fourier et le spectre de puissance.