Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.
Présente l'approche de l'espace d'état pour modéliser des systèmes dynamiques et son utilité pour la solution à grande vitesse des équations différentielles et des algorithmes informatiques.
Couvre les principes fondamentaux et l'analyse de stabilité des systèmes de contrôle en réseau, y compris l'installation de logiciels, les systèmes dynamiques, les états d'équilibre et les tests de stabilité.
Couvre la modélisation des systèmes dynamiques, y compris les définitions, les exemples et les processus de linéarisation pour une analyse plus facile.