Processus ponctuels : Convergence et processus gaussiens
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Introduit la probabilité, les statistiques, les distributions, l'inférence, la probabilité et la combinatoire pour étudier les événements aléatoires et la modélisation en réseau.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Explore la stationnarité dans les processus stochastiques, en montrant comment les caractéristiques statistiques restent constantes au fil du temps et les implications sur les variables aléatoires et les transformées de Fourier.
Discuter du compromis entre les variables biaisées dans l'apprentissage automatique, en mettant l'accent sur l'équilibre entre la complexité du modèle et l'exactitude des prédictions.
Couvre les concepts fondamentaux de la statistique, y compris la théorie de l'estimation, les distributions et la loi des grands nombres, avec des exemples pratiques.