Explore les machines vectorielles de support, maximisant la marge pour une classification robuste et la transition vers la SVM logicielle pour les données séparables non linéairement.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explique le processus de recherche d'une solution réalisable de base initiale pour les problèmes d'optimisation linéaire à l'aide de l'algorithme Simplex.
Couvre les concepts fondamentaux de l'optimisation et de la recherche opérationnelle, en explorant des exemples du monde réel et des sujets clés sur un semestre.