Couvre les opérations matricielles, les transformations de Fourier, les modèles gaussiens et les représentations de signaux en utilisant des méthodes algébriques.
Couvre la classification des variétés p-adiques compactes en utilisant la formule C.o.V et explore les variétés algébriques lisses et le lemme de Hensel.
Couvre les propriétés de la carte exponentielle dans les groupes de Lie et leurs algèbres, y compris la douceur et la relation entre les sous-groupes et les algèbres.
Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.