Présente les espaces fonctionnels et les espaces de Hilbert, en discutant des espaces de produits intérieurs et de l'importance de l'exhaustivité dans les espaces de Hilbert.
Explique l'orthogonalité et les caractères dans les représentations de groupe, y compris les classes d'équivalence et les dimensions vectorielles de l'espace.
Couvre la détermination des espaces vectoriels, le calcul des noyaux et des images, la définition des bases et la discussion des sous-espaces et des espaces vectoriels.
Explore la définition et les propriétés des applications linéaires, en mettant l'accent sur l'injectivité, la surjectivité, le noyau et l'image, en mettant l'accent sur les matrices.