Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Techniques d'intégration avancées: Théorème de Fubini
Graph Chatbot
Séances de cours associées (30)
Précédent
Page 1 sur 3
Suivant
Techniques d'intégration pour Double Integrals
Couvre les techniques de calcul des doubles intégrales à l'aide du Théorème de Fubini et des exemples.
Integrals inappropriés: Convergence et comparaison
Explore les intégrales inappropriées, les critères de convergence, les théorèmes de comparaison et la révolution solide.
Le théorème de Fubini : plusieurs intégrales
Explore le théorème de Fubini pour de multiples intégrales, en mettant l'accent sur le cas n 2.
Théorème de Fubini sur les rectangles fermés
Explore le théorème de Fubini sur les rectangles fermés dans R2, discutant de l'intégrabilité, des intégrales itérées et des ensembles compacts.
Techniques d'intégration : changement de variable et intégration par parties
Explore des techniques d'intégration avancées telles que le changement de variable et l'intégration par parties pour simplifier les intégrales complexes et résoudre les problèmes d'intégration difficiles.
Intégration multiple : Théorème Fubini
Explore l'intégration multiple dans R2, en mettant l'accent sur les doubles intégrales sur les rectangles fermés et le théorème Fubini.
Changement de variables : Intégrabilité et théorème de Fubini
Explore les variables changeantes dans les intégrales doubles et applique le théorème de Fubini dans R2 pour simplifier les calculs.
Integrals multiples: Définitions et propriétés
Couvre la définition et les propriétés de multiples intégrales, y compris les intégrales doubles et triples.
Magnétostatique : champ magnétique et force
Couvre les champs magnétiques, la loi d'Ampère et les dipôles magnétiques avec des exemples et des illustrations.
Intégrales incorrectes: concepts fondamentaux et exemples
Couvre les intégrales incorrectes, leurs définitions, leurs propriétés et leurs exemples en deux et trois dimensions.