Couvre une analyse SWOT de l'apprentissage automatique et de l'intelligence artificielle, explorant les forces, les faiblesses, les possibilités et les menaces sur le terrain.
Explore l'apprentissage à partir de données interconnectées avec des graphiques, couvrant les objectifs de recherche modernes de ML, les méthodes pionnières, les applications interdisciplinaires, et la démocratisation du graphique ML.
Offre une introduction complète à la science des données, couvrant Python, Numpy, Pandas, Matplotlib et Scikit-learn, en mettant l'accent sur les exercices pratiques et le travail collaboratif.
Explore le rôle des technologies numériques dans l'action humanitaire et l'importance de la compréhension de la technologie pour les professionnels de divers secteurs.
Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.