Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explorer des modèles linéaires généralisés pour les données non gaussiennes, couvrant l'interprétation de la fonction de liaison naturelle, la normalité asymptotique MLE, les mesures de déviance, les résidus et la régression logistique.
Explore les modèles linéaires pour la classification, la régression logistique, les limites de décision, la SVM, la classification multi-classes et les applications pratiques.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore la régression logistique, les fonctions de coût, la descente en gradient et la modélisation de probabilité à l'aide de la fonction sigmoïde logistique.
Explore la théorie des modèles linéaires généralisés, y compris la logistique et la régression de Poisson, lévaluation des modèles et les tests de coefficient.
Explore les modèles linéaires pour la classification, y compris les modèles paramétriques, la régression et la régression logistique, ainsi que les mesures d'évaluation des modèles et les classificateurs de marge maximum.