Explore les conditions KKT dans l'optimisation convexe, couvrant les problèmes doubles, les contraintes logarithmiques, les moindres carrés, les fonctions matricielles et la sous-optimalité de la couverture des ellipsoïdes.
Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Sur Convex Optimization couvre l'organisation des cours, les problèmes d'optimisation mathématique, les concepts de solution et les méthodes d'optimisation.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.