Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Couvre les techniques d'estimation spectrale comme la réduction et l'estimation paramétrique, en soulignant l'importance des modèles AR et la probabilité de Whittle dans l'analyse des séries chronologiques.
Explore l'application de l'algèbre linéaire dans la science des données, couvrant la réduction de la variance, la théorie de la distribution des modèles et les estimations du maximum de vraisemblance.