Probabilité maximale: Inférence et comparaison du modèle
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les principes fondamentaux du traitement des données, soulignant l'importance des Pandas et de la modélisation des données pour une analyse efficace.
Couvre les principes fondamentaux de la science des données, en mettant l'accent sur la profondeur et l'application pratique dans l'apprentissage automatique et l'analyse de données.
Introduit des concepts de modélisation de données, l'utilisation de SQL et des applications de bibliothèque Pandas pour un traitement efficace des données.
Se concentre sur l'inférence de la cinétique de réaction dans la combustion, couvrant l'inférence des règles, l'analyse de sensibilité et l'inférence bayésienne.
Couvre la méthode de l'élément fini statistique, en mettant l'accent sur la construction d'une mesure préalable, en traitant des erreurs de spécification des modèles et en combinant les données des capteurs avec les modèles FEM.
Couvre le rôle des modèles et des données dans lapprentissage statistique et les formulations doptimisation, avec des exemples de problèmes de classification, de régression et destimation de la densité.