Explore la construction et les propriétés des complexes CW, en se concentrant sur les cartes caractéristiques, les sous-ensembles fermés, les produits, les quotients et la formation cellulaire.
Couvre les bases de la topologie, en mettant l'accent sur la cohomologie et les espaces de quotient, en mettant l'accent sur leurs définitions et leurs propriétés à travers des exemples et des exercices.
Explore la finitude de fermeture dans les complexes CW, prouvant que les sous-espaces compacts sont contenus dans des sous-complexes finis par induction et des cartes caractéristiques.
Explore la compacité, la continuité et les espaces de quotient en topologie, en mettant l'accent sur la topologie des lignes en R2 et les propriétés des ensembles compacts.