Couvre les méthodes d'optimisation, les garanties de convergence, les compromis et les techniques de réduction de la variance en optimisation numérique.
Introduit Manopt, une boîte à outils pour l'optimisation sur les collecteurs, en se concentrant sur la résolution des problèmes d'optimisation sur les collecteurs lisses à l'aide de la version Matlab.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore la convexité géodésique et son extension à l'optimisation sur les collecteurs, soulignant la préservation du fait clé que les minima locaux impliquent des minima globaux.
Déplacez-vous dans la non-convexité bénigne, l'analyse des composantes principales, l'achèvement de la matrice de bas rang et la détection communautaire dans l'optimisation.
Introduit Manopt, une boîte à outils pour l'optimisation sur les collecteurs lisses avec une structure Riemannienne, couvrant les fonctions de coûts, différents types de collecteurs, et principes d'optimisation.