Explore l'intégration de l'apprentissage automatique dans des modèles à choix discrets, en soulignant l'importance des contraintes théoriques et des approches hybrides de modélisation.
Explore l'apprentissage des modèles latents dans des structures graphiques, en se concentrant sur des scénarios avec des échantillons incomplets et en introduisant la notion de distance entre les variables.
Couvre l'analyse des composantes principales pour la réduction de dimensionnalité, en explorant ses applications, ses limites et l'importance de choisir les composantes appropriées.