Séance de cours

Représentations et traitement des données

Séances de cours associées (37)
Régression linéaire et régression logistique
Couvre la régression linéaire et logistique pour les tâches de régression et de classification, en mettant l'accent sur les fonctions de perte et la formation de modèle.
Évaluation du modèle et réglage de l'hyperparamètre
Explore l'évaluation des modèles, le réglage hyperparamétrique et les stratégies de rééchantillonnage dans l'apprentissage automatique.
Apprentissage automatique: Bases de la modélisation des matériaux à base de données
Couvre la réduction de dimensionnalité et la régression linéaire dans la modélisation des matériaux axée sur les données.
Méthodes de noyau: Machine Learning
Couvre les méthodes du noyau dans l'apprentissage automatique, en se concentrant sur le surajustement, la sélection du modèle, la validation croisée, la régularisation, les fonctions du noyau et la SVM.
Représentation des données : PCA
Couvre la représentation des données à l'aide de PCA pour la réduction de la dimensionnalité, en se concentrant sur la préservation du signal et l'élimination du bruit.
Représentations et traitement des données
Couvre les représentations des données, les défis des données déséquilibrées et les stratégies de normalisation et de nettoyage des données.
Fondements de l'apprentissage automatique
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Algorithmes ML non linéaires
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Régression linéaire et descente progressive
Couvre la régression linéaire, la descente par gradient, le surajustement et la régression par crête, entre autres concepts.
Critères de sélection du modèle : AIC, BIC, Cp
Explore les critères de sélection des modèles comme l'AIC, le BIC et le Cp en statistique pour la science des données.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.