Explore la diagonalisation des matrices à travers des valeurs propres et des vecteurs propres, en soulignant l'importance des bases et des sous-espaces.
Explore les valeurs propres et les vecteurs propres dans l'algèbre linéaire 3D, couvrant les polynômes caractéristiques, la stabilité sous les transformations, et les racines réelles.
Explore la base canonique en algèbre linéaire, en se concentrant sur la représentation matricielle, la diagonalisation et les polynômes caractéristiques.
Couvre la décomposition d'une matrice dans ses valeurs propres et ses vecteurs propres, l'orthogonalité des vecteurs propres et la normalisation des vecteurs.