Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore les valeurs propres et les vecteurs propres, démontrant leur importance dans l'algèbre linéaire et leur application dans la résolution de systèmes d'équations.
Couvre les valeurs propres, les vecteurs propres et la séquence de Fibonacci, en explorant leurs propriétés mathématiques et leurs applications pratiques.
Explore la régression linéaire avec et sans covariables, couvrant des modèles capturés par des distributions indépendantes et des outils comme des sous-espaces et des projections orthogonales.