Explore la classification des images en utilisant des arbres de décision et des forêts aléatoires pour réduire la variance et améliorer la robustesse du modèle.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Introduit les bases de la science des données, couvrant les arbres de décision, les progrès de l'apprentissage automatique et l'apprentissage par renforcement profond.
Couvre les fondamentaux de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur les tâches de classification d'images à l'aide de l'intelligence artificielle.
Explore les forêts aléatoires en tant que méthode d'ensemble puissante pour la classification, en discutant des stratégies d'ensachage, d'empilage, de renforcement et d'échantillonnage.
Explore l'apprentissage supervisé en économétrie financière, en mettant l'accent sur les algorithmes de classification comme Naive Bayes et la régression logistique.
Discute de l'analyse des textures dans les images, en se concentrant sur les propriétés statistiques et structurelles, les techniques de segmentation et les applications d'apprentissage automatique pour la classification des textures.