Discute de la série Laurent et du théorème des résidus dans l'analyse complexe, en se concentrant sur les singularités et leurs applications dans l'évaluation des intégrales complexes.
Explore les opérateurs différentiels, les courbes régulières, les normes et les fonctions injectives, en répondant aux questions sur les propriétés, les normes, la simplicité et l'injectivité des courbes.
Explore les singularités essentielles et le calcul des résidus dans une analyse complexe, en soulignant la signification de coefficients spécifiques et la validité des intégrales.
Discute de l'analyse complexe, en se concentrant sur le théorème des résidus et les transformées de Fourier, avec des exercices pratiques et des applications dans la résolution des équations différentielles.